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1 Pre-knowledge

1.1 Fundamentals of Logic

Symbolic logic is about statements which one can meaningfully claim to be true or false.

That is, each statement has the truth value ’True’(T) or ’false’ (F). (By Analysis I from

Herbert)

Theorem 1.1. A statement is either True or False. There are no other possibilities,

and no statement can be both true and false.

1.2 Sets

Definition 1.2. Power sets(P (X)) are the set of all subset of X.

There are serval properties

• ∅ ∈ P (X)

• X ∈ P (X)

• x ∈ X ⇔ x ∈ P (X)

• Y ⊆ X ⇔ Y ∈ P (X)

Definition 1.3. (Cartesian) productX × Y of two sets X,Y are set of order

pairs(x, y) where x ∈ X, y ∈ Y

Definition 1.4. Families of SetsAα is a set which have index α where α ∈ A and A

is nonempty

1.3 Functions

Definition 1.5. A function, map f from set X to Y is a kind of rule which for each

element in set X specifies exactly one element in Y , we denote as:

f : X → Y

Where the element in Y is f(x) we call it the value of f at x, and we call X as the

domian of the function, Y as the codomain of the f

Definition 1.6. Image of f is a subset of Y for f : X → Y where defined as:

im(f) := {y ∈ Y, ∃x ∈ X : y = f(x)}

I am now going to give some basic function we might use later:

4



• Projection: If X1, ...., Xi are not empty then the projection function is

prk :

n󰁜

j=1

Xj → Xk, x = (x1, ..., xn) → xk, k = 1, 2, 3, ...

• characteristic function: Let X ∕= ∅, and A ⊆ X. Then the characteristic function of

A is:

χA : X → {0, 1}, x →

1.4 Injections, Surjections and Bijections

1.5 Limits

1.6 Limits of Sequence

Definition 1.7. Limit of Sequence The limit of a sequence (an) is defined as follows:

∀ε > 0, ∃N such that for all n > N ,

|an − L| < ε

The limit of the sequence is L, denoted as limn→∞ an = L.

Here is an illustration of this definiton:

If a sequence (an) has a limit, then it is a convergent sequence; otherwise, it is a divergent

sequence.
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Theorem 1.8. The limit of a sequence possesses several important properties, in-

cluding:

1. The limit of a sequence is unique.

2. If an ≤ bn for all n greater than some N , and both sequences have finite limits,

then limn→∞ an ≤ limn→∞ bn.

For further exploration: If an > 0 for all n > N , and the limit of an as n approaches

infinity exists and is finite, then this limit is greater than 0.

1.7 Limits of function

2 Numbers

2.1 The Natural Numbers

2.2 The Peano Axioms

The natural number consist with set N, where a distinguished element 0 ∈ N, and a function

ν : N → N× := N\{0} with following properties:

1. ν is injective

2. If a subset N contains 0 and ν(n) ∈ N for all n ∈ N then N = N

And we denote

3 Real analysis

3.1 Construction of the real numbers

3.1.1 Completeness of Real number

Can you prove the ”irrationality property” for the following set of numbers?

We know
√
2 is irrational. We need to prove that the set L = {x ≤ 0}∪{x > 0 : x2 < 2},

together with the set R = {r > 0 : r2 > 2}, are disjoint subsets of the rational numbers Q,

and that for every r ∈ R there exists a ”gap”, i.e., there is no number in L such that it is

one less than any number in R. Formally, this is described as: for every x ∈ (−∞,
√
2) and

(
√
2,+∞), there is no rational number equal to

√
2.

Here are the conditions for a set A and B to prove the irrationality property, with A

and B being nonempty subsets of Q, disjoint and open:

1. If a ∈ A, then there exists an a′ ∈ A such that a′ > a.

2. If b ∈ B, then there exists a b′ ∈ B such that b′ < b.

3. If a ∈ A and b ∈ B, then a ≤ b.

4. There are no largest or smallest elements in A or B.
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Since L = A ∩Q and R = B ∩Q are nonempty and consist of all rational numbers less

than or equal to
√
2 and greater than

√
2 respectively, then according to the property above,

we can define the set A = (−∞,
√
2) ∩Q, B = (

√
2,+∞) ∩Q.

Therefore, for a ∈ A and b ∈ B, we have a ≤ x <
√
2 < b. Finally, since A = (−∞, x)

and B = [x,+∞).
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3.2 Order properties of the real numbers
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3.3 Sequences

3.4 Supremum & Infimum

Definition 3.1. For a subset M ⊆ R, b ∈ R is called Upper bound iff:

∀x ∈ M : x ≤ b

If it is a lower bound, then x ≥ b

In simpler terms, an upper bound is a value that is greater than or equal to every element

in the set.

Definition 3.2. For a subset M ⊆ R, s ∈ R is called supremum iff:

• ∀x ∈ M : x ≤ s

• ∀ε > 0, ∃x̄ ∈ M : s− ε < x̄

Then we write supM := s

Definition 3.3. For a subset M ⊆ R, l ∈ R is called infimum iff:

• ∀x ∈ M : x ≥ l

• ∀ε > 0, ∃x̄ ∈ M : l + ε > x̄

Then we write infM := l

remark 3.4. If M is not bounded, then we write supM := ∞, infM := −∞.

If M is an empty set, then we write supM := −∞, infM := ∞

3.5 Cauchy sequence

Definition 3.5. A sequence (an)n∈N is called cauchy sequence iff:

∀ε > 0, ∃N ∈ N, ∀n,m ≥ N : |an − am| < ε

In simpler terms, this means that as you move further along in the sequence, the differ-

ence between its terms becomes smaller and smaller, eventually becoming as small as you

like.

remark 3.6. In real numbers, every convergent sequence is a Cauchy sequence,

and every Cauchy sequence is convergent. This equivalence is a cornerstone of real

analysis.

Cauchy sequence ⇔ Convergent sequence

Which is known as completeness axiom.
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Theorem 3.7. Dedekind completeness:

• If M ⊆ R is upper bounded, then supM ∈ R exists

• If M ⊆ R is lower bounded, then infM ∈ R exists

Proof. Not yet understand()

Theorem 3.8. If a sequence is monotonically decreasing and bounded below, then

it is a convergent sequence.

3.6 Bolzano-Weierstrass Theorem

Theorem 3.9. If (an)n∈N is bounded, then it has a accumlation value. In another

word, every bounded sequence in real number has a convergent subsequence.

Proof. Lets define a new sequence which has lower bound c0 and upper bound d0. Then we

can esaily divide it into bisection with two same interval.

Bisection step: At least one of these subintervals must contain infinitely many terms

of the sequence (an). Label this subinterval as [c1, d1]. Repeat this process for [c1, d1],

dividing it into two and selecting the subinterval, say [c2, d2], that contains infinitely many

terms of (an). Continue this process indefinitely. In each step, select a subinterval [ck, dk]

that contains infinitely many terms of the sequence.

Limit stepAfter we get the [ck, dk], we can see that, [ck, dk] ⊂ [ck−1, dk−1] ⊂ [ck−2, dk−2] ⊂
... ⊂ [c0, d0]. Hence, d1 − c1 = 1

2 (d0 − c0), dn − cn = 1
2n (dn−1 − cn−1). When n → ∞, the

difference apporach to 0.

Construction step: It is obvious that (cn)n∈N is monotonically increase and (dn)n∈N

is monotonically decrease. That is, they are convergent. (After prove they are convergent

we can apply limit on these sequences) Notice:

lim
n→∞

(dn − cn) = 0 = lim
n→∞

(dn)− lim
n→∞

(cn)

Final step: Then let’s define (ank
)k∈N as a new sequence where ank

∈ [ck, dk]. That is:

ck ≤ ak ≤ dk

By sandwich theorem we know that (ank
)k∈N is convergent.

3.7 Limit superior and inferior

lim
n→∞

an = ∞ ⇔ Divergent to ∞ ⇔ ∀C > 0, ∃N ∈ N, ∀n ∈ N : an > C

lim
n→∞

an = −∞ ⇔ Divergent to −∞ ⇔ ∀C < 0, ∃N ∈ N, ∀n ∈ N : an < C
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We call this type of accumulation as improper accumulation. When it does not bounded

lower, then it has improper value of −∞, when it does not bounded above, then it has

improper value of ∞.

Definition 3.10. For sequence (an)n∈N, An element a ∈ R
󰁖
{−∞,∞} is called:

• Limit superior of (an)n∈N if a is the largest (improper) accumulation value of

(an)n∈N. We write: a = lim supn→∞ an

• Limit inferior of (an)n∈N if a is the smallest (improper) accumulation value of

(an)n∈N. We write: a = lim infn→∞ an

At the same time we can write:

lim sup
n→∞

an = lim
n→∞

sup{ak|k ≥ n}

lim inf
n→∞

an = lim
n→∞

inf{ak|k ≥ n}

There are serval researons for define the limit superior and limit inferior

• For sequences that do not converge, the limit superior and inferior provide a way to

describe their behavior. They are particularly useful in handling oscillating sequences

or sequences with multiple limit points.

• Unlike the usual limit, the limit superior and limit inferior always exist for any bounded

sequence and for many unbounded sequences.

• If a sequence an does converge, then its limit superior and limit inferior are both equal

to this limit. This property is often used in proofs to show convergence.

• These concepts are also used in the convergence tests for series, particularly in under-

standing the behavior of the terms of a series.

example 3.11.

an = (−1)n · n = −1, 2,−3, ...

It is obvious that this sequence is not convergent however we can find a subsequence

where we can esaily get the limit superior and inferior:

lim sup
n→∞

an = ∞

lim inf
n→∞

an = −∞
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Theorem 3.12. Sequence an is conergent if:

lim sup
n→∞

an = lim inf
n→∞

an /∈ {∞,−∞}

At the same time, if an is divergent to ∞ then:

lim sup
n→∞

an = lim inf
n→∞

an = ∞

Some properties which are only exists when the value is defined(Not infinty times zero

etc.):

1. lim supn→∞(an + bn) ≤ lim supn→∞ an + lim supn→∞ bn

2. lim supn→∞(an · bn) ≤ lim supn→∞ an · lim supn→∞ bn

For limit inferior, we just change the direction of inequality.
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3.8 Series

Definition 3.13. Series are sequence(Sn) which is the summation of a sequence an

from inital value to infinity, where we denote it as:

Sn =

n󰁛

i=1

ai, n ∈ N

If Sn is convergent then we write:

∞󰁛

i=1

ai := lim
n→∞

Sn = lim
n→∞

∞󰁛

i=1

ai

example 3.14. Harmonic series are special series which write as:

∞󰁛

k=1

1

k

This serie seems to be convergent however it is not.

Proof. Let Sn =
󰁓n

k=1
1
k where increase monotonically and we are going to prove that this

sequence is not bounded above.

Here are some properties if series
󰁓

ak,
󰁓

bk are convergent

1.
󰁓

(ak + bk) =
󰁓

ak +
󰁓

bk convergent

2.
󰁓

(λak) = λ
󰁓

ak

3.8.1 Criterion of Series

Theorem 3.15. Cauchy criterion claims that a series in R is convergent iff it is

cauchy sequence and follows that:

∞󰁛
akConvergent ↔ ∀ε > 0, ∃N ∈ N, ∀n ≥ m ≥ N

we have:

|
n󰁛

m

ak| < ε

which it is simply another representation of cauchy sequence
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3.9 Introduction to topology

3.10 Open, Close, and Compact sets

We first define what is a neighborhood:

Definition 3.16.

ε > 0, (x− ε, x+ ε) := B(x)

which we call it ε-neighborhood. A neighborhood of x is:

For M ⊆ R, ∃ε > 0, st.M ⊇ B(x)

Definition 3.17. M ⊆ R is called open set in R iff for all x ∈ M , M is a neigh-

borhood of x.

∀x ∈ M, ∃ε > 0, st.N(x) ⊆ M

After define what is open set we are going to define close set use the definition of opensets:

Definition 3.18. A set A is close set iff AC is open set

Theorem 3.19. A set is close can be deseribed by convergent sequence: For A ∈ R
if all (an)n∈N with an ∈ A and limn→∞ an ∈ A then A is close set.

Then we are going to give a special definition which are so important—compact set

Definition 3.20. A ⊆ R is called compact if for all an ∈ A, ∀n ∈ N there is a

convergent subsequence ank
where:

lim
k→∞

ank
∈ A

• ∅ is compact

• [c, d], c < d is compact

• {n} is compact

• R is not compact

Theorem 3.21. Heine-Borel theorem: For A ⊆ R is compact iff its bounded and

closed

Proof. We will prove this equivlent statement in both direction:

(⇐) : Use the same method in proof of Bolzano-Welerstrass theorem

(⇒) Assume A is compact, then there is an convergent sequence an ∈ A ⊆ R where

has accumulation value ā ∈ A. We first prove that A is closed—because there is only one

accumulation value a, hence ā = a ∈ A. By theorem 3.19 this means that A is closed.
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We then prove that A is bounded by contradiction—Assume A is unbounded, then ∃an ∈
A where |an| > n, ∀n ∈ N, we constructed does not have any convergent subsequence.

This is because its terms grow without bound and thus cannot converge to any point in

R. A sequence that tends to infinity doesn’t converge, which contradicts the property of

compactness in A.
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