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1 Pre-knowledge

1.1 Fundamentals of Logic

Symbolic logic is about statements which one can meaningfully claim to be true or false.
That is, each statement has the truth value 'True’(T) or ’false’ (F). (By Analysis I from
Herbert)

Theorem 1.1. A statement is either True or False. There are no other possibilities,
and no statement can be both true and false.

1.2 Sets

Definition 1.2. Power sets(P(X)) are the set of all subset of X.

There are serval properties
e e P(X)

e X € P(X)

e recX & axePX)

e YCX&YePX)

Definition 1.3. (Cartesian) productX x Y of two sets X,Y are set of order
pairs(z,y) where z € X,y € Y

Definition 1.4. Families of SetsA, is a set which have index o where o € A and A

is nonempty

1.3 Functions

Definition 1.5. A function, map f from set X to Y is a kind of rule which for each
element in set X specifies exactly one element in Y, we denote as:

f: X—>Y

Where the element in Y is f(z) we call it the value of f at z, and we call X as the
domian of the function, Y as the codomain of the f

Definition 1.6. Image of f is a subset of Y for f: X — Y where defined as:

im(f) :={y €Y, 3w e X :y= f(z)}

I am now going to give some basic function we might use later:



e Projection: If X1, ...., X; are not empty then the projection function is

pri HXj = Xy = (21,0 Tp) 2> x, k=1,2,3, ...
j=1

e characteristic function: Let X # (), and A C X. Then the characteristic function of
As:
xa:X —={0,1},2 —
1.4 Injections, Surjections and Bijections

1.5 Limits

1.6 Limits of Sequence

Definition 1.7. Limit of Sequence The limit of a sequence (ay,) is defined as follows:
Ve > 0,dN such that for all n > N,

la, — L| < ¢

The limit of the sequence is L, denoted as lim,, ., a, = L.

Here is an illustration of this definiton:

-
n
Example of a sequence which converges to the limit a. Regardless which € > 0 we have, there is an index Np, so that
the sequence lies afterwards completely in the epsilon tube
(a—¢,a+e).
r t . o . ay, T e .o N
. ° 5 _..ﬁﬁa.rgl \' = R N ate
o O Q a-e t .., e .
1 3 " a-g
+ n n
Ny
There is also for a smaller £; > 0 an index V7, so that the For each £ > 0 there are only finitely many sequence members
sequence is afterwards inside the epsilon tube outside the epsilon tube.

(a—e1,a+¢er).

If a sequence (ay,,) has a limit, then it is a convergent sequence; otherwise, it is a divergent

sequence.



Theorem 1.8. The limit of a sequence possesses several important properties, in-

cluding:
1. The limit of a sequence is unique.

2. If a,, < b, for all n greater than some N, and both sequences have finite limits,

then lim,, .o a, < lim,,_soo by

For further exploration: If a,, > 0 for all n > N, and the limit of a,, as n approaches

infinity exists and is finite, then this limit is greater than 0.

1.7 Limits of function

2 Numbers

2.1 The Natural Numbers
2.2 The Peano Axioms

The natural number consist with set N, where a distinguished element 0 € N, and a function
v: N — N* := N\{0} with following properties:

1. v is injective
2. If a subset N contains 0 and v(n) € N for all n € N then N =N

And we denote

3 Real analysis

3.1 Construction of the real numbers
3.1.1 Completeness of Real number

Can you prove the ”irrationality property” for the following set of numbers?

We know /2 is irrational. We need to prove that the set L = {z < 0}U{z > 0: 2% < 2},
together with the set R = {r > 0: 72 > 2}, are disjoint subsets of the rational numbers Q,
and that for every r € R there exists a "gap”, i.e., there is no number in L such that it is
one less than any number in R. Formally, this is described as: for every x € (—oo, \/5) and
(v/2, +00), there is no rational number equal to /2.

Here are the conditions for a set A and B to prove the irrationality property, with A

and B being nonempty subsets of Q, disjoint and open:
1. If a € A, then there exists an a’ € A such that a’ > a.
2. If b € B, then there exists a b’ € B such that b’ < b.
3. Ifae Aand b € B, then a < b.

4. There are no largest or smallest elements in A or B.



Since L= ANQ and R = BN Q are nonempty and consist of all rational numbers less
than or equal to v/2 and greater than v/2 respectively, then according to the property above,
we can define the set A = (—00,v/2)NQ, B = (v/2,4+00) N Q.

Therefore, for a € A and b € B, we have a < z < /2 < b. Finally, since A = (—o0, z)
and B = [z, +00).



3.2 Order properties of the real numbers



3.3 Sequences

3.4 Supremum & Infimum

Definition 3.1. For a subset M C R, b € R is called Upper bound iff:
VreM:x<b

If it is a lower bound, then = > b

In simpler terms, an upper bound is a value that is greater than or equal to every element
in the set.

Definition 3.2. For a subset M C R, s € R is called supremum iff:
eVreM:z<s
e Ve>0,dxeM:s—e<zZ

Then we write sup M := s

Definition 3.3. For a subset M C R, [ € R is called infimum iff:
eVeeM:x>1
e Ve>0,dzeM:l+e>=x

Then we write inf M =1

remark 3.4. If M is not bounded, then we write sup M := oo, inf M := —oo.

If M is an empty set, then we write sup M := —oo,inf M := co

3.5 Cauchy sequence

Definition 3.5. A sequence (a,)nen is called cauchy sequence iff:

Ve > 0,IN e N,Vn,m > N : |a, — an| < €

In simpler terms, this means that as you move further along in the sequence, the differ-
ence between its terms becomes smaller and smaller, eventually becoming as small as you
like.

remark 3.6. In real numbers, every convergent sequence is a Cauchy sequence,
and every Cauchy sequence is convergent. This equivalence is a cornerstone of real
analysis.

Cauchy sequence < Convergent sequence

Which is known as completeness axiom.




Theorem 3.7. Dedekind completeness:
e If M C R is upper bounded, then sup M € R exists

e If M C R is lower bounded, then inf M € R exists

Proof. Not yet understand() O

Theorem 3.8. If a sequence is monotonically decreasing and bounded below, then

it is a convergent sequence.

3.6 Bolzano-Weierstrass Theorem

Theorem 3.9. If (a,)nen is bounded, then it has a accumlation value. In another

word, every bounded sequence in real number has a convergent subsequence.

Proof. Lets define a new sequence which has lower bound ¢y and upper bound dg. Then we
can esaily divide it into bisection with two same interval.

Bisection step: At least one of these subintervals must contain infinitely many terms
of the sequence (a,). Label this subinterval as [c1,d;]. Repeat this process for [c1,d4],
dividing it into two and selecting the subinterval, say [cq, d2], that contains infinitely many
terms of (a,). Continue this process indefinitely. In each step, select a subinterval [cg, dj]
that contains infinitely many terms of the sequence.

Limit step After we get the [cg, di], we can see that, [ck, di] C [ck—1,dr—1] C [ck—2,dr—2] C

.. C [co,do]. Hence, dy — ¢1 = 3(do — ¢o),dp — ¢n = 5 (dn—1 — ¢n—1). When n — oo, the
difference apporach to 0.

Construction step: It is obvious that (¢;,)nen is monotonically increase and (d,,)nen
is monotonically decrease. That is, they are convergent. (After prove they are convergent
we can apply limit on these sequences) Notice:

lim (dy, —¢p,) =0= lim (d,,) — lim (c,)

n—oo n—oo n—00

Final step: Then let’s define (ay, )ren as a new sequence where a,, € [cg,di]. That is:
cr <ap < dg

By sandwich theorem we know that (an, )ken is convergent.

3.7 Limit superior and inferior

lim a, = co < Divergent to co < VC > 0,AN e NN\Vne N :a,, > C

n—oo

lim a,, = —00 < Divergent to — o0 < VC < 0,IN e NNVne N :a, < C

n—oo
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We call this type of accumulation as improper accumulation. When it does not bounded

lower, then it has improper value of —oo, when it does not bounded above, then it has

improper value of oo.

Definition 3.10. For sequence (a,)nen, An element a € R J{—o0, 00} is called:

e Limit superior of (a,)nen if @ is the largest (improper) accumulation value of

(an)nen. We write: a = limsup,,_, . an,

e Limit inferior of (ay)nen if @ is the smallest (improper) accumulation value of

(an)nen. We write: a = liminf, _, a,

At the same time we can write:

limsupa, = lim sup{ag|k > n}
n—00 n—*CO

liminfa, = lim inf{ax|k > n}
n—oo n—oo

There are serval researons for define the limit superior and limit inferior

e For sequences that do not converge, the limit superior and inferior provide a way to
describe their behavior. They are particularly useful in handling oscillating sequences

or sequences with multiple limit points.

e Unlike the usual limit, the limit superior and limit inferior always exist for any bounded
sequence and for many unbounded sequences.

e If a sequence a,, does converge, then its limit superior and limit inferior are both equal

to this limit. This property is often used in proofs to show convergence.

e These concepts are also used in the convergence tests for series, particularly in under-

standing the behavior of the terms of a series.

example 3.11.
anp =(-1)"-n=-1,2,-3,...
It is obvious that this sequence is not convergent however we can find a subsequence

where we can esaily get the limit superior and inferior:

lim sup a,, = o0
n— oo

lim inf a,, = —c0
n—oo

11



Theorem 3.12. Sequence a,, is conergent if:

lim sup a,, = lim inf a,, ¢ {co0, —co0}
n—00 W=rE

At the same time, if a, is divergent to oo then:

lim sup a,, = lim inf a,, = co
n—o00 W=E2

Some properties which are only exists when the value is defined(Not infinty times zero
etc.):

1. limsup,,_, o (an + by) < limsup,,_, . an + limsup,,_, . bn
2. limsup,, ., (an - by) < limsup,,_, . a, - limsup,,_, . b,

For limit inferior, we just change the direction of inequality.

12



3.8 Series

Definition 3.13. Series are sequence(.S,,) which is the summation of a sequence a,

from inital value to infinity, where we denote it as:

n
8y = Zai,n eN
i=1

If S, is convergent then we write:

oo oo

g a; ;= lim S, = lim g a;
n—oo n—oo

i=1 i=1

This serie seems to be convergent however it is not.

Proof. Let S, =Y p_, % where increase monotonically and we are going to prove that this

sequence is not bounded above.

Here are some properties if series > ay, Y by are convergent
1. Y (ag +br) = ag + > by convergent

2. Z(/\ak) = )\Zak

3.8.1 Criterion of Series

~

Theorem 3.15. Cauchy criterion claims that a series in R is convergent iff it is

cauchy sequence and follows that:

o0
Zak,Convergent —Ve>0,AN e N\Vn>m > N

we have:
n
| Z ak| <eé
m

which it is simply another representation of cauchy sequence

13



3.9 Introduction to topology

3.10 Open, Close, and Compact sets

We first define what is a neighborhood:

Definition 3.16.
€>0,(z—¢e,x+¢):= B(x)

which we call it e-neighborhood. A neighborhood of z is:

For M CR,3e > 0,st.M DO B(x)

Definition 3.17. M C R is called open set in R iff for all x € M, M is a neigh-
borhood of z.
Ve € M,3e > 0,st.N(z) C M

After define what is open set we are going to define close set use the definition of opensets:

Definition 3.18. A set A is close set iff AC is open set

Theorem 3.19. A set is close can be deseribed by convergent sequence: For A € R
if all (ap)nen with a, € A and lim,, o a, € A then A is close set.

Then we are going to give a special definition which are so important—compact set

Definition 3.20. A C R is called compact if for all a, € A,Vn € N there is a

convergent subsequence a,, where:

lim a,, € A
k—o0

() is compact

e [c,d],c < d is compact

{n} is compact

e R is not compact

Theorem 3.21. Heine-Borel theorem: For A C R is compact iff its bounded and

closed

Proof. We will prove this equivlent statement in both direction:

(«<=) : Use the same method in proof of Bolzano-Welerstrass theorem

(=) Assume A is compact, then there is an convergent sequence a, € A C R where
has accumulation value a € A. We first prove that A is closed—because there is only one

accumulation value a, hence @ = a € A. By theorem 3.19 this means that A is closed.

14



We then prove that A is bounded by contradiction—Assume A is unbounded, then Ja, €

A where |a,| > n,Vn € N, we constructed does not have any convergent subsequence.

This is because its terms grow without bound and thus cannot converge to any point in

R. A sequence that tends to infinity doesn’t converge, which contradicts the property of

compactness in A.
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