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2 Fundamentals of Linear Algebra

Linear algebra is a branch of mathematics that focuses on the study of vectors, vector

spaces, linear mappings, and systems of linear equations. It provides a framework for solv-

ing equations that describe lines, planes, and higher-dimensional spaces. Key concepts

include matrices, determinants, eigenvalues, and eigenvectors, which are tools for perform-

ing linear transformations and solving linear systems. Essential in various scientific and

engineering disciplines, linear algebra has applications in computer science, physics, eco-

nomics, and statistics, offering a fundamental language for understanding and manipulating

linear systems and geometrical concepts in many dimensions.

2.1 Vector spaces and linear transformations

2.1.1 Vectors in R2

Definition 2.1. Vectors are elements of Certestain product of sets, more specific
󰀃
a
b

󰀄

is a vector in R2.

Vector can be used to represent direction and length, we also have some basic operational

rules:

Theorem 2.2. Vectors follows:

• Scaling λ ∈ R,󰂓v :=
󰀃
v1
v2

󰀄
,λ󰂓v =

󰀃
λv1
λv2

󰀄

• Addition 󰂓v + 󰂓w =
󰀃
v1+w1

v2+w2

󰀄

Then R2 with two operators (+, ·) is called vector space R2.

2.1.2 Inner Product and Norm in R2

Notice that these definitions are only suitable in R2

Definition 2.3. The inner product(< 󰂓v, 󰂓w >) of two vector 󰂓vm󰂓w define as:

< 󰂓v, 󰂓w >= v1w1 + v2w2

Definition 2.4. The norm||󰂓v|| of vectors are defined as:

||󰂓v|| =
󰁴
v21 + v22 =

󰁳
< 󰂓v,󰂓v >
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2.1.3 Lines in R2

Definition 2.5. Lines in R2 are sets of points where:

L = {󰂓v ∈ R2| < 󰂓n,󰂓v − 󰂓p >= 0}

󰂓n, 󰂓p are vectors from orginal point to the points on line L. 󰂓n is the normal vector of

the line.

Or equivalently, L = {
󰀃
x
y

󰀄
∈ R2|n1x+ n1y = δ} where δ :=< 󰂓n, 󰂓p >.

2.1.4 Rn Vector Space

Definition 2.6. Rn is Certestain product of R for n times. With elements in the

form:

󰂓v =

󰀳

󰁅󰁅󰁅󰁅󰁃

v1

v2
...

vn

󰀴

󰁆󰁆󰁆󰁆󰁄

If it follows the vector addition and scalar multiplications, then the we call (Rn,+, ·)
as a vector space.

remark 2.7. (Rn,+) is an ablian group

Ablian group is a commutative group, where addition in ablian group are commutative:

a+ b = b+ a

We will discuss the precisely definition of group later, but for now, a group is a set with

an operator (G,+) (You should notice that the operator is not restrict to +, it can be any

binary operator) where elements in G follows:

• a+ (b+ c) = (a+ b) + c, associative

• a+ 0 = 0 + a = a, where 0 =

󰀳

󰁅󰁅󰁃

0
...

0

󰀴

󰁆󰁆󰁄

• a+ a−1 = a−1 + a = 0

• If the group is ablian, then a+ b = b+ a

remark 2.8. Rn follows compatiable and distribution rules in scalar

multiplication(· : R× Rn → Rn):

• compatiable: λ · (µ · v) = (λ · µ) · v and 1 · v = v

• distribution laws: λ · (v + w) = λ · v + λ · w and (λ+ µ) · v = λ · v + µ · v
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Definition 2.9. The unit element in Rn defined as:

e1 =

󰀳

󰁅󰁅󰁅󰁅󰁃

1

0
...

0

󰀴

󰁆󰁆󰁆󰁆󰁄
, e2 =

󰀳

󰁅󰁅󰁅󰁅󰁃

0

1
...

0

󰀴

󰁆󰁆󰁆󰁆󰁄
, ...

Theorem 2.10. Any vector(󰂓v =

󰀳

󰁅󰁅󰁅󰁅󰁃

v1

v2
...

vn

󰀴

󰁆󰁆󰁆󰁆󰁄
∈ Rn) can be reperesnted by a linear com-

bination:

󰂓v =

n󰁛

j=1

vj · ej

2.1.5 Linear Subspaces

2.2 Matrices and determinants

2.3 Eigenvalues and eigenvectors

2.4 Inner product spaces
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3 Advanced Linear Algebra

3.1 Spectral theorem

3.2 Jordan canonical form

3.3 Bilinear forms and quadratic forms

3.4 Tensor products
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4 Introduction to Abstract Algebra

Abstract algebra is a branch of mathematics that deals with algebraic structures such as

groups, rings, fields, and vector spaces. It focuses on the generalization and abstraction

of algebraic concepts, rather than specific number systems. The study of groups explores

sets equipped with an operation that combines any two elements to form a third element

in a specific manner, while rings and fields extend these concepts to include operations

like addition and multiplication. Linear algebra, a subset of abstract algebra, specifically

studies vector spaces and linear mappings between these spaces. It includes the study of

lines, planes, and subspaces, but is also concerned with properties common to all vector

spaces. The connection between linear algebra and abstract algebra lies in the fact that

vector spaces are a type of group, and the transformations studied in linear algebra are

examples of functions studied in abstract algebra, thus making linear algebra an essential

foundation for understanding the broader concepts of abstract algebra.

4.1 Groups, rings, and fields

4.2 Homomorphisms and isomorphisms

4.3 Introduction to modules

4.4 Category theory basics
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5 Commutative Algebra

Commutative algebra is a branch of mathematics that focuses on commutative rings, their

ideals, and modules over such rings. This field is a fundamental part of algebraic geometry,

as it provides the algebraic foundation for the study of geometric problems.

The connection between commutative algebra and abstract algebra lies in their shared

foundational concepts. Abstract algebra deals with algebraic structures like groups, rings,

and fields, where the focus is on understanding and abstracting the properties and operations

within these structures. Commutative algebra, specifically, studies a particular type of ring

— commutative rings — where the multiplication operation is commutative.

Thus, commutative algebra can be seen as a specialized area within abstract algebra,

where the principles and theories of abstract algebra are applied to a specific subset of

algebraic structures. The techniques and theories developed in commutative algebra are

essential in many areas of mathematics, including algebraic geometry and number theory,

where the structure of commutative rings provides a crucial framework for exploring and

solving problems.

5.1 Commutative rings and ideals

5.2 Noetherian and Artinian rings

5.3 Ring homomorphisms and localizations

5.4 Primary decomposition and integral extensions
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6 Homological Algebra

6.1 Exact sequences and homology

6.2 Projective, injective, and flat modules

6.3 Tensor and Tor, Ext and Hom

6.4 Derived functors
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7 Introduction to Algebraic Geometry

Abstract

Algebraic geometry is a branch of mathematics that studies geometric structures

arising from solutions to algebraic equations and abstract algebraic concepts. It bridges

and extends ideas from both geometry and abstract algebra, especially commutative

algebra.

The connection between algebraic geometry and commutative algebra is profound

and integral. In algebraic geometry, geometric objects called ”varieties” are studied,

which are solutions to systems of polynomial equations. These varieties can be under-

stood and analyzed using the tools of commutative algebra, specifically the study of

commutative rings and their ideals.

In more technical terms, there is a deep correspondence in algebraic geometry be-

tween geometric spaces (varieties) and the commutative rings of functions defined on

these spaces. This correspondence is fundamental in the field, allowing for the transla-

tion of geometric problems into algebraic terms and vice versa. For instance, properties

of geometric objects can be studied through the properties of corresponding commu-

tative rings (like ring homomorphisms reflecting geometric mappings).

Hence, commutative algebra provides the algebraic framework and tools necessary

for many of the key developments and breakthroughs in algebraic geometry, making it

a cornerstone of this mathematical field.

7.1 Affine and projective varieties

7.2 Morphisms of varieties

7.3 Hilbert’s Nullstellensatz

7.4 Dimension theory
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8 Advanced Topics in Algebraic Geometry

8.1 Sheaves and schemes
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8.4 Riemann-Roch theorem
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